- 7. (a) Describe the origin of hyperfine structure in spectral lines and the role of nuclear spin.8
 - (b) For a two-valence electron system, derive the spectral terms for non-equivalent electrons in the pd configuration.6

Unit IV

- 8. (a) Explain the classical and quantum mechanical interpretations of the normal Zeeman effect.
 - (b) Calculate the wavelength shift in the normal Zeeman effect for a spectral line at (500, \text {nm}) in a magnetic field of .5 T (Use $\mu_B = 9.274 \times 10^{-24}$ J/T). **6**
- 9. (a) Discuss the experimental setup for studying the Zeeman effect.8
 - (b) Explain the anomalous Zeeman effect and the role of the Lande g-factor in its interpretation.6

No. of Printed Pages: 04 Roll No.

34613

B.Sc. Hons (NEP-2020) EXAMINATION, 2025

(Fourth Semester)

B23-PHY-403

Atomic Spectroscopy

Time: 3 Hours [Maximum Marks: 70

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks. Use of a scientific (non-programmable) calculator is allowed.

- 1. Compulsory Question: 4×3.5=14
 - (a) Explain the significance of the Rydberg constant in atomic spectroscopy.
 - (b) What is the difference between penetrating and non-penetrating orbits in the context of the vector atom model?
 - (c) Define the Lande interval rule and its application in LS coupling.
 - (d) Differentiate between normal and anomalous Zeeman effects.

Unit I

- 2. (a) Describe Bohr's postulates and their role in explaining the spectral series of the Hydrogen atom.8
 - (b) Calculate the wavelength of the first line in the Balmer series of the Hydrogen atom, given the Rydberg constant ($R = 1.097 \times 10^7 \text{ m}^{-1}$).
- 3. (a) Explain the concept of space quantization and electron spin in the vector atom model.

2

(b) Discuss the shortcomings of Bohr's theory in explaining atomic spectra.6

Unit II

- 4. (a) Explain the spin-orbit interaction energy for a single valence electron and its effect on the fine structure of Hydrogen spectra.
 - (b) Calculate the energy difference between the doublet states of the sodium atom ((3p)) given the spin-orbit coupling constant is $(\zeta = 11.5 \text{ cm}^{-1})$ 6
- 5. (a) Discuss the main features of alkali spectraand their theoretical interpretation.
 - (b) Explain the Rydberg-Ritz combination principle with an example.6

Unit III

- **6.** (a) Compare LS and JJ coupling schemes for a two-valence electron system. **8**
 - (b) Explain the Pauli exclusion principle and its role in the periodic classification of elements.